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Abstract

Natural convection in enclosures is extensively investigated due to its importance in many applications, such as heat
transfer through double glazing windows, electronic cooling devices, geophysical applications, etc. Two configurations
that have been extensively explored in the literature are the differentially heated enclosures and the Rayleigh–Benard
problems. In the present work, a different kind of problem is investigated, namely the cross thermal boundary condi-
tions. Three dimensional analyses were performed for an enclosure cooled from below with one vertical wall heated,
and the other connecting walls were assumed to be adiabatic. The thermal condition at the ceiling is varied from an
adiabatic one to a different degree of heating. The objective of this study is to simulate the comfort provided by floor
cooling in a room. For comfort requirements, the interest is on determining the rate of heat transfer and the temper-
ature distribution in the room. Also, the results have importance for other cooling applications such as electronic cool-
ing and natural convection in freezers. Furthermore, the problem is academically interesting for understanding the
fundamentals of natural convection. Based on the authors� knowledge, the physics of this problem has not been
explored by other people in such a detail. However, the application has been in practice from ancient times.

The predicted results are interesting and have practical applications. For a certain configuration, where strong three
dimensional recirculations were predicted, the flow is three dimensional, hence the two dimensional assumption is not
valid. Also, it is found that the rate of rate transfer from the floor is a weak function of the investigated parameters,
such as Rayleigh number.
� 2005 Published by Elsevier Ltd.
1. Introduction

Natural convection in enclosures can be historically
classified into three groups: enclosure heated from below
and cooled from above (Rayleigh–Benard problem), dif-
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ferentially heated enclosures, and enclosures with cross
thermal boundary conditions.

The interest in natural convection in cavities goes
back to early 1900. Benard (1900) and Rayleigh (1916)
studied the stability of flows in cavities heated from
below. It is believed that the driving force in Benard�s
experiments can mainly be attributed to the surface ten-
sion. However, the buoyancy driven flow in a cavity
heated from below and cooled from above is referred
to as the Rayleigh–Benard problem. The problem of
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Fig. 1. Schematic diagram of the problem with coordinate
system.
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an enclosure heated from below has been extensively
studied by many researches with different attentions. A
review on the mentioned problem can be found in the
references [1,2].

Interest on natural convection in differentially heated
enclosures started to investigate the rate of heat transfer
in double glazing windows, solar collectors and geother-
mal applications. The earliest work on natural convec-
tion in a differentially heated enclosure was found to
belong to Batchelor [3]. This problem was extensively
studied both experimentally and numerically. Most ana-
lytical work done was based on two dimensional
assumptions [4–8]. Latter on, three dimensional analyses
were performed and it was found that the flow structure
is three dimensional due to the lateral boundary layer
effects. Also, the effects of thermal boundary conditions
on flow and heat transfer were studied [9–14]. However,
the average rate of heat transfer is not that sensitive to
the lateral connecting walls, i.e., the average Nusselt
number predicted by two dimensional assumptions is
compared with the one obtained from three dimensional
analyses.

Cross thermal boundary conditions are the main
focus in the present investigation. The problem is inter-
esting for comfort cooling and heating of buildings. His-
torically, floor heating dates back to Roman times
currently are being employed for achieving comfort just
in a few places. Also, floor cooling, obtained by passing
cooling fluid through concrete floor slabs has been con-
sidered by few researchers [15–18]. Floor cooling and
heating is mainly based on radiation exchange between
walls and objects. However, natural convection is very
important for thermal stratification, which may have
unfavorable effects on the thermal comfort. The main
problem encountered in floor cooling is the water vapor
condensation, provided the floor is cooled below the sat-
uration temperature. This may become a major prob-
lem, especially in humid regions.

The problem can be idealized by assuming that the
floor is kept at a constant, low temperature, while
one of the walls exposed to the ambient is kept at a
constant high temperature. Other adjusted rooms are
assumed to be at the same conditions as the control
room, therefore other vertical walls are assumed to be
adiabatic. The ceiling may have different thermal condi-
tions depending on the condition of the second floor.
That is, different scenarios were explored, namely adia-
batic and different degrees of cooling. Also, the prob-
lem has important academically to understand the
heat and fluid flow in enclosures with different bound-
ary conditions. The results show very interesting phe-
nomena, three dimensional vortices hanging at the
ceiling of the enclosure. It should mention that, the
radiative heat transfer is not coupled with convection
because air is assumed to be non-participating medium
and temperature of heat and cooled boundaries are
summed to be known. Therefore, radiative heat flux
can be calculated as an additive quantity.
2. Problem definition and governing equations

The problem under consideration is an enclosure filled
with air of Pr = 0.71, Fig. 1. The dimensions of the rect-
angular enclosure are Lx, Ly and Lz. The floor is kept at a
low temperature, Tc, and the left wall is kept at a high
temperature, Th. Different scenarios were explored by
imposing different thermal conditions for the ceiling.
These include adiabatic and different rates of heating con-
ditions, which mainly depend on the thermal condition of
the roof. For instance, if the room is located on the first
floor and the second floor is also using floor cooling, then
the ceiling thermal condition depends on the insulation
layers as well as on the location of the cooling tubes.
The other connecting walls are assumed to be adiabatic.
The air was assumed to be Newtonian and incompress-
ible, Boussinesq approximation being valid.

Using the following dimensionless variables: X =
x/Lx, Y = y/Lx, Z = z/Lx, ~V ¼~vLx=m, P ¼ pL2

x=qm
2,

H = (T � T0)/(T1 � T0), where m is the kinematical vis-
cosity of the fluid and~v is the velocity vector, the equa-
tions governing the conservation of mass, momentum
and energy in a non dimensional form can be written
as follows:

~r.~V ¼ 0 ð1Þ

ð~V . ~rÞ~V ¼ � ~rP þr2~V þ Ra
Pr

H~k ð2Þ

~V .rH ¼ 1

Pr
r2H ð3Þ
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where~k is the unit vector inZ direction,Ra = (gbTDTL
3)/

ma is the thermal Rayleigh number and Pr = m/a is the
Prandtl number.

All boundaries are assumed to be rigid, no-slip con-
ditions being imposed for velocities

U ¼ V ¼ W ¼ 0 on X ¼ 0;Ax

U ¼ V ¼ W ¼ 0 on Y ¼ 0;Ay

U ¼ V ¼ W ¼ 0 on Z ¼ 0; 1 ð4Þ

The following boundary conditions are used for the
energy equation.
Fig. 2. (a) Ra = 106, floor cooling, adiabatic ceiling, (b) Ra = 106, floo
at T = 0.2, (d) Ra = 106, floor cooling, ceiling at T = 0.4, (e) Ra = 1
ceiling at T = 0.8 (g) Ra = 106, floor cooling, ceiling at T = 1.0.
H = 0 on Z = 0, for Z = 1.0 different rates of cooling
were imposed, i.e., H = 0, 0.2, 0.4, 0.6, 0.8, 1.0 and
adiabatic.

H ¼ 1 on X ¼ 0 and oH=oX ¼ 0 on X ¼ Ax

oH=oY ¼ 0 on Y ¼ 0; 1 ð5Þ

The Nusselt number is calculated as Nu ¼ � oH
on , where n

represents a direction normal to a wall. The average
Nusselt number is defined as Nuav ¼ 1

A

R
NudA.
r cooling, ceiling at T = 0.0, (c) Ra = 106, floor cooling, ceiling
06, floor cooling, ceiling at T = 0.6, (f) Ra = 106, floor cooling,



Fig. 2 (continued)
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3. Numerical method

Eqs. (1)–(5) are discretized using staggered, non-
uniform control volumes. In order to minimize the
numerical diffusion errors, QUICK scheme is used to
approximate the advection terms. The flux limiter
known as ULTRA-SHARP is used in order to eliminate
the non-physical oscillations inherent in the QUICK
scheme. To alleviate the convergence problems, the
method is implemented in the solution procedure using
the deferred correction approach. SIMPLEC algorithm
is used to couple momentum and continuity equations.
The momentum equations are solved by applying one
iteration of the strongly implicit procedure (SIP). The
pressure correction equation is solved iteratively by
applying the conjugate gradient (CG) method until the
sum of absolute residuals has decreased by a factor of
ten. The coefficient matrix, resulting from the discretiza-
tion of the energy equation is non-symmetric and solved
iteratively by employing the Bi-CGSTAB method.
SSOR preconditioning is used for accelerating the con-
vergence rates of both CG and Bi-CGSTAB methods.
Generally, under relaxation factors of 0.7, 0.7, 0.7, 1.0
and 0.9 were applied to U, V, W, P and T, respectively.
For more details on the numerical scheme we referee to
the work of Sezai and Mohamad [19].



Fig. 3. Floor cooling, Nu at the floor, Ra = 106, Ax = 1.0.
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To avoid the excessively high computer times inher-
ent in the solution of three dimensional natural convec-
tion problems, the full multigrid method is used to solve
the problem, which removes a wider spectrum of wave-
lengths more efficiently than the single grid methods.
The equations are solved by a four level fixed V-cycle



Fig. 4. Floor cooling, Nu ceiling, Ra = 106, Ax = 1.0.
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procedure starting at the coarsest grid and progressing
to the finer grid level. For prolongation operations, tri-
linear interpolation is used for all variables. For restric-
tion, the area-weighted average procedure is used for all
quantities defined on the control-volume surface such as
velocities. The volume-weighted average procedure is



Fig. 5. Average Nusselt number as a function of heating degree of the ceiling, Ra = 106, Ax = 1.0.
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adopted for all quantities defined at the control-volume
center such as pressure and temperature. The results
obtained using 86 · 86 · 86 control volumes were com-
pared with those obtained using 128 · 128 · 128 control
volumes and the difference was not noticeable. There-
fore, all calculations carried out in this work are based
on 86 · 86 · 86 control volumes.

To ensure convergence of the numerical algorithm
the following criteria is applied to all dependent vari-

ables over the solution domain,

P
j/m

ijk�/m�1
ijk jP

j/m
ijk j

6 10�5,

where / represents a dependent variable U, V, W, P
and T, the indexes i, j, k indicate a grid point and the
index m provides the number of the current iteration
at the finest grid level. It is found that 50 iterations is
more than necessary to obtain a convergent solution.
4. Results and discussion

Since the interest is on the thermal comfort achieved
by employing floor cooling, the temperature and local
Nusselt distribution in the enclosure are presented and
discussed for Rayleigh numbers of 106 and 107. The flow
became unstable for higher Rayliegh numbers, Ra > 107.
The results are presented for a cubic enclosure and for
an enclosure of aspect ratio Ax = 0.5.

Fig. 2 shows the temperature field in the cubic enclo-
sure for different thermal boundary conditions at the
ceiling of the enclosure: adiabatic, kept at a temperature
equal to that of the floor, H = 0; different degrees of
heating, 0.2, 0.4, 0.6, 0.8; and constant temperature
equal to that of the heated wall, H = 1.0, respectively
and. The value of the Rayleigh number is Ra = 106.

The flow is thermally stratified in the core of the
enclosure for the adiabatic ceiling and for ceiling kept
at hot wall temperature condition, H = 1.0. The results
show a sharp temperature gradient near the floor, which
gradually decreases up to a height of about 0.5 (middle
of the enclosure). The temperature becomes nearly con-
stant for the upper portion of the enclosure (Z > 0.5).
The temperature distribution is almost uniform in planes
parallel to the floor, except near the heated wall.

An interesting temperature distribution and flow pat-
tern can be noticed for cold ceiling condition, H = 0.
The flow became strongly three dimensional and falling
plumes form at the ceiling descending toward the adia-
batic wall. Two transverse elliptical vortices form near
the adiabatic wall and their strength decreases near the
heated wall. The strength of the transverse vortices
decreases as the heating rate of the ceiling increases
and completely diminishes when the ceiling temperature
is equal to the heated wall temperature.

For H = 0.6 a primarily buoyancy driven cell forms.
The strength of the cell decreases as H increases, and
totally diminishes for H = 1.0. The flow is thermally
stratified when the ceiling temperature is equal to the
heated wall temperature.

High temperature gradients are observed near the
floor for all investigated conditions.



Fig. 6. Average Nusselt number as a function of heating degree of the ceiling, Ra = 106, Ax = 0.5.

Fig. 7. (a) Ra = 106, Ax = 0.5, floor cooling, ceiling at T = 0.0, (b) Ra = 106, Ax = 0.5, floor cooling, ceiling at T = 1.0.
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Local Nusselt numbers on the floor and on the ceiling
are shown in Figs. 3 and 4, respectively, forRa = 106. The
boundary conditions at the ceiling significantly influence
the local Nusselt number at the floor. The local Nusselt
numbers along the floor is high near the hot wall and
decreases toward the adiabatic wall, which is also sup-
ported by the temperature field. This can be explained
based on the fact that the thermal boundary layer thick-
ness is thin at the floor, near the hot wall, and increases
towards the adiabatic one. The three dimensionality of



Fig. 8. (a) Ra = 107, floor cooling, adiabatic ceiling, (b) Ra = 107, floor cooling, ceiling at T = 0.0, (c) Ra = 107, floor cooling, ceiling
at T = 0.2, (d) Ra = 107, floor cooling, ceiling at T = 0.4, (e) Ra = 107, floor cooling, ceiling at T = 0.6, (f) Ra = 107, floor cooling,
ceiling at T = 0.8 and (g) Ra = 107, floor cooling, ceiling at T = 1.0.
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the flow is evident. For Ra = 106, the Nusselt number at
the ceiling shown in Fig. 4 presents a minimum value for
heated ceiling and increases as the ceiling cooled. The neg-
ative values of Nusselt number indicate that heat is being
transferred from the ceiling to the air. TheNusselt number
reaches its highest values near the hot wall and decreases
toward the adiabatic wall. The three dimensionality of the
flow has a significant effect on the local Nusselt number
variation in the transverse direction, especially for cold
ceiling conditions, H = 0.0.

Area-averaged Nusselt numbers on the floor, ceiling,
and heated wall are shown Fig. 5 for different ceiling
cooling rates and for Ra = 106. The average Nusselt
number on the floor is a weak function of the rate of
ceiling cooling. While the Nusselt number on the heated
wall decreases significantly as the ceiling cooling rate
decreases. For instance, for a cold ceiling the Nusselt
number on the wall is about 17 and drops to about 7
for a heated ceiling condition. The average value of
the Nusselt number on the ceiling is about 12 for a cold
ceiling and reaches almost zero as the ceiling tempera-
ture becomes equal to the hot wall temperature.

Similar results are obtained for an aspect ratio of
0.5 (Ax = 0.5). Fig. 6 shows average Nusselt numbers



Fig. 8 (continued)
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as in Fig. 5, except that Ax = 0.5. The average Nusselt
number on the floor is not so sensitive for the investi-
gated range of aspect ratios. However, the average
Nusselt number on the heated wall deceases as the
aspect ratio decreases. The same can be said for the
ceiling Nusselt number. Also, the temperature profiles
for Ax = 0.5 showed similar trend, Fig. 7, as for
Ax = 1.0 in Fig. 2. Hence, there is no need to elaborate
on the results of Ax = 0.5, which does not add new
physical insight.

Results were also obtained for Ra = 107. The tem-
perature profiles are shown in Fig. 8. The strength of
the descending recirculations increases compared with
the ones obtained using Ra = 106, Fig. 2. The three
dimensionality of the flow is very clear, even for an adi-
abatic ceiling condition. The flow exhibits a complex
pattern, which is evident from the temperature profiles.
For Ra = 106, the temperature was almost constant in
the core of the enclosure for heights greater than about
0.4 and for adiabatic or heated ceiling conditions,
Fig. 3, while for Ra = 107, the flow is stratified and
temperature increases with the height for the afore
mentioned conditions. For H = 0–0.6, the flow des-
cends at the corners and at the center plane along
the adiabatic wall. This indicates that three cells form
in the enclosure, the strength of these cells decreases
as H increases. The circulations enhance the mixing
process in the core of the enclosure and consequently
reduce the temperature gradient in the core of the
enclosure.



Fig. 9. Floor cooling, Ra = 107, Ax = 1.0, Nu floor.
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The local Nusselt number distributions on the floor
are very complex due to the complex flow pattern,
Fig. 9. Yet, it has higher value near the heated wall com-
pared with the values near the adiabatic wall. The same
conclusion can be drawn for the local Nusselt number
on the ceiling of the enclosure, Fig. 10.



Fig. 10. Floor cooling, Ra = 107, Ax = 1.0, Nu ceiling.
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The average Nusselt numbers on the floor are not sig-
nificantly affected by the Rayleigh number. This can be
demonstrated by comparing Fig. 11 with Fig. 5, where
Fig. 11 plots the average Nusselt numbers on the floor,
ceiling and heated wall as a function of the rate of ceiling
heating for Ra = 107. The absolute values of the average



Fig. 11. Average Nusselt number as a function of heating degree of the ceiling, Ra = 107, Ax = 1.0.
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Nusselt number on the heated wall and the ceiling
increased significantly by increasing the Rayleigh
number.
5. Conclusions

Three dimensional natural convection in enclosures
subjected to cross thermal boundary conditions was
investigated computationally. The flow may be stratified
for two specific conditions of the ceiling, namely, adia-
batic or heated. The degree of stratification depends
on the Rayleigh number. For a cold ceiling there is a
possibility of descending traversal recirculations. The
strength of these recirculations increases near the adia-
batic wall and with the increase in the Rayleigh number.
A descending flow at the top corners and at the central
plane along the adiabatic wall is evident for Ra = 107. It
is found that the average rate of heat transfer from the
floor is almost constant and not a strong function of
the Rayleigh number. The rate of heat transfer from
the heated wall and ceiling increases as the Rayleigh
number increases.

In general, sharp thermal gradients develop near the
floor for the entire range of the investigated parameters.
Also, the flow exhibits three dimensionality, where
transverse recirculations predicted for cold ceiling condi-
tions occur.
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